Chinese wholesale TU-1D02 thermal wax actuator for air conditioner and compressor for Swedish Factories
Short Description:
Product Detail
Product Tags
Chinese wholesale TU-1D02 thermal wax actuator for air conditioner and compressor for Swedish Factories Detail:
1. Operation Principle
The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.
2. Characteristic
(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.
(2)Temperature control is reliable and nicety
(3)No shaking and tranquilization in working condition.
(4)The element doesn’t need special maintenance.
(5)Working life is long.
3.Main Technical Parameters
(1)Handspike’s height may be confirmed by drawing and technical parameters
(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.
(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.
(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.
(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.
Product detail pictures:
We support our buyers with ideal high quality products and high level service. Becoming the specialist manufacturer in this sector, we have gained rich practical experience in producing and managing for Chinese wholesale TU-1D02 thermal wax actuator for air conditioner and compressor for Swedish Factories, The product will supply to all over the world, such as: South Africa , Cannes , UK , Customer satisfaction is our goal. We are looking forward to cooperating with you and providing our best services for you. We warmly welcome you to contact us and please feel free to contact us. Browse our online showroom to see what we can do for you. And then E-mail us your specifications or inquiries today.
Watch the full episode: https://www.thisoldhouse.com/watch/ask-toh-nasa-simulated-panels
Ask This Old House plumbing and heating expert Richard Trethewey helps a homeowner install an indirect water heater onto an existing steam boiler to boost the amount of hot water in the house.
Click here to SUBSCRIBE to the official This Old House YouTube channel: https://www.youtube.com/subscription_center?add_user=thisoldhouse
Time:
5-6 hours
Cost:
$3000
Skill Level:
Difficult
Tools List:
Hose
Water pump
Level
Propane torch
Pipe cutter
Adjustable wrench
Pipe wrench pliers
Shopping List:
1” copper pipe
½” copper pipe
Y-Strainer
Ball valves
Shut off valves
Circulator Pump
Thermostatic mixing valve
Relief valve
Water temperature sensor
Sensor relay
Solder
Shims
Sand cloth
Pipe dope
Steps:
1. Turn off the main power switch on the boiler and the main water supply to the boiler.
2. Hook up a hose and water pump to the boiler’s draw off valve to drain down the water in the boiler. If possible, pump the water into a utility sink or extend the hose outdoors.
3. Find a spot for the new water heater. Use shims and a level to make sure it is sturdy and level.
4. Find a workable place to tap into the boiler to connect the boiler to the indirect water heater via the heat exchanger coil- preferably just below the water line to avoid any potential for sludge near the bottom of the boiler.
5. Dry fit 1” copper pipe connections from boiler to the heat exchanger coil input. Be sure to place a ball valve shut off at the tap point. Place a Y-Strainer after the ball valve to act as a filter and flush point. Use appropriate adapter pipe fittings, pipe dope and plumber’s tape to connect piping. Make sure all connections are level.
6. Before soldering any copper pipes, be sure to use sand cloth and flux on all the connections.
7. Solder the connections with solder and a propane torch.
8. Break the connection to the boiler draw off valve. This input will now serve as the return for the heat exchanger coil and a draw off.
9. Dry fit 1” copper pipe connections from the heat exchanger coil output to the input of the boiler. The pipe run should include a circulator pump, a purge valve, shut off ball valve and a second purge valve in that order.
10. Solder the connections with solder and a propane torch.
11. Break the connection to the main water supply into the boiler using a pipe cutter. Be sure to have a bucket ready to catch any excess water.
12. Dry fit ½” copper pipe connections from the main water supply to the cold water input at the bottom of the indirect water heater. Use appropriate adapter pipe fittings, pipe dope and plumber’s tape to connect piping. The pipe run should include a tee coupling to reconnect the new run to the boiler. Include a shut off valve after the coupling into the boiler. Extend piping off the middle portion of the tee coupling. Pipe should extend to the indirect water heater and include a draw off valve at the cold input. Additional pipe should also be connected to the thermostatic mixing valve.
13. Break the connection from the boiler to the main hot water feed into the home using a pipe cutter.
14. Dry fit the ½” copper pipe connections from the output on top of the indirect water heater. The pipe run should feed to a relief valve, the thermostatic mixing valve and connect to the main hot water feed into the home.
15. Solder the connections with solder and a propane torch.
16. Attach a temperature sensor to the indirect water heater.
17. Attach an electronic relay to the boiler.
18. Make the electrical connections from the temperature sensor to the relay on the boiler and the circulator pump.
19. Turn the main power switch on the boiler back on.
20. Turn the water supply valve back on.
21. Use the purge valves to eliminate any excess air in the system. You’ll need a bucket to catch the water.
22. It will take some time for the water heater tank to fill and heat up.
Follow This Old House and Ask This Old House:
Facebook: https://www.facebook.com/ThisOldHouse
Twitter: https://twitter.com/thisoldhouse
https://twitter.com/asktoh
Pinterest: https://www.pinterest.com/thisoldhouse/
G+: https://plus.google.com/+thisoldhouse/posts
Instagram: https://instagram.com/thisoldhouse
Tumblr: https://thisoldhouse.tumblr.com/
This is a quick time lapse video of me replacing the solenoids on my 2004 545i transmission valve body. Sorry, I had the resolution set as high as it would go on my camera on accident, so I ran out of memory card space before I got all the way through this. I was originally going to show a lot more detail on taking the valve body/mechatronics apart and how the replace the solenoids & reinstall everything. Hopefully this still helps someone though.
Typically BMW will tell you to replace the entire transmission when there are any issues or at the very least, sell you an entirely new valve body/mechatronics unit at the cost of a kidney on the black market. If you’re a decent DIY’er you might have even found rebuilt mechatronics/valve bodies online for $1500 or so. Most common issues can be resolved with just new EDS solenoids (pressure regulating solenoids), which can be found on the internet. I got mine from thectsc.com in one of the kits for under $500.
My issues were slow going into reverse (3 to 4 seconds), jerky shifts, especially 3 to 2 and 5 to 6, and transmission errors under hard acceleration during a 4 to 5 shift. All issues have been resolved. I can barely tell when it even shifts anymore it’s so smooth now.
Oh, and mine has 181K MILES ON THE ORIGINAL TRANSMISSION. The hard parts of these transmissions are great, it’s the solenoids that fail early due to BMW’s “lifetime transmission fluid” joke.
MAKE SURE YOU RESET ALL OF THE ADAPTATIONS IN INPA BEFORE DRIVING THE CAR. Do not rely on the “hold the accelerator to the floor with the engine off for 30 seconds” trick. It has never worked like a real reset for me.
Please comment with any questions. Its a pretty simple job, just messy with all the transmission fluid that keeps dripping out.
Update:
INPA software link: https://bmwcoders.com/forum/bmw-gt1-ops-opps-inpa-24/bmw-inpa-ediabas-installation-manual-software-328/
Compatible cable:
https://www.one-stop-electronics.com/shop/index.php?dispatch=products.view&product_id=16
Pictures of seal between valve body / oil pump:
https://www.thectsc.com/images/products/0501%20219%20952%2001.jpg
https://i260.photobucket.com/albums/ii29/GearShift2008/6HP26/Bridgeseal.jpg
https://i260.photobucket.com/albums/ii29/GearShift2008/6HP26/Valveblockremoved.jpg