2017 wholesale price TU-1J02 thermal wax actuator for electric switch valve for Bangladesh Importers

2017 wholesale price 
 TU-1J02 thermal wax actuator for electric switch valve for Bangladesh Importers

Short Description:

Product Detail

Product Tags

Our corporation insists all along the quality policy of "product top quality is base of organization survival; purchaser pleasure will be the staring point and ending of an company; persistent improvement is eternal pursuit of staff" plus the consistent purpose of "reputation very first, purchaser first" for Thermostatic Control Valve , Thermal Actuator Fabrication , Wax Thermostat , You would not have any communication problem with us. We sincerely welcome prospects all around the globe to call us for business enterprise cooperation.
2017 wholesale price TU-1J02 thermal wax actuator for electric switch valve for Bangladesh Importers Detail:

1. Operation Principle

The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.

2. Characteristic

(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.

(2)Temperature control is reliable and nicety

(3)No shaking and tranquilization in working condition.

(4)The element doesn’t need special maintenance.

(5)Working life is long.

3.Main Technical Parameters

(1)Handspike’s height may be confirmed by drawing and technical parameters

(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.

(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.

(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.

(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.


Product detail pictures:

2017 wholesale price 
 TU-1J02 thermal wax actuator for electric switch valve for Bangladesh Importers detail pictures


Persisting in "High quality, Prompt Delivery, Competitive Price", we have established long-term cooperation with clients from both overseas and domestically and get new and old clients' high comments for 2017 wholesale price TU-1J02 thermal wax actuator for electric switch valve for Bangladesh Importers, The product will supply to all over the world, such as: San Francisco , Senegal , Kenya , We've a good reputation for stable quality solutions, well received by customers at home and abroad. Our company would be guided by the idea of "Standing in Domestic Markets, Walking into International Markets". We sincerely hope that we could do business with customers both at home and abroad. We expect sincere cooperation and common development!



  • Ernie’s Alloys 13680 NW 19th Ave Unit 10 in Miami, FL 33054 Come test drive this 2008 Mercedes-Benz OEM ML/GL Class Wheels/Tires for sale in Miami, FL.



    A quick video showing the single channel fan controller I made with an arduino. When I get the code simplified I will make this a 4-channel device and use it on my PC to control the fans for the liquid cooling loops.

    Credit on the circuit goes to Oscar Gonzalez @ bricogeek.com. He designed the circuit using a CNY75 optocoupler to isolate the Arduino from the 12V that is needed to run the fan. From there, I used a 2SC1384 transistor to amplify the PWM signal from the optocoupler. My fan doesn’t like PWM output and makes a high-pitched whining noise, so I used a 220uF capacitor across the motor leads to flatten the PWM output. Not a great solution, but it will work until I can find something better.

    Temp sensing comes from an LM35, however since I mostly deal in Fahrenheit, an LM34 would have worked better and eliminated some code for conversion. Trip points are set at 75 for fan shutoff, 85 for fan startup, and 90 for maximum. Once the temp has reached 85, it is dynamically adjusted from 15% – 100% between 75 and 90. Once it drops below 75 it shuts down.

    Revision:

    I have modified the circuit a bit to drive a larger load using a MOSFET instead of the 2SC1384 NPN Transistor. By increasing the PWM frequency of the ATmega’s timer1 frequency to 31.25kHz the fan whine has been eliminated.

    Source code can be found here:

    https://pastebin.com/ZRbuetwM

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Heart

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Truck

    WhatsApp Online Chat !