High reputation for TU-1F90 thermal wax actuator for automobile engine thermostat manufacturers to Uzbekistan Factories
Short Description:
Product Detail
Product Tags
High reputation for TU-1F90 thermal wax actuator for automobile engine thermostat manufacturers to Uzbekistan Factories Detail:
1. Operation Principle
The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.
2. Characteristic
(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.
(2)Temperature control is reliable and nicety
(3)No shaking and tranquilization in working condition.
(4)The element doesn’t need special maintenance.
(5)Working life is long.
3.Main Technical Parameters
(1)Handspike’s height may be confirmed by drawing and technical parameters
(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.
(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.
(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.
(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.
Product detail pictures:
We have been proud from the higher consumer gratification and wide acceptance due to our persistent pursuit of high quality both on product or service and service for High reputation for TU-1F90 thermal wax actuator for automobile engine thermostat manufacturers to Uzbekistan Factories, The product will supply to all over the world, such as: Mongolia , Venezuela , Australia , We've got a dedicated and aggressive sales team, and many branches, catering to our customers. We are looking for long-term business partnerships, and ensure our suppliers that they will absolutely benefit in both short and long run.
Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.
J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !
Liens des tutoriaux pour Blender:
Code pour l’UDF dans Fluent:
#include “udf.h”
#include “models.h”
enum
PSI
;
real z = 1;
real F = 96485.33289; /*(C/mol) */
real R = 8.3144621 ; /* (J/mol*K) */
real T = 305; /* (K) */
real epsilon = 6.9*0.0000000001; /* (C/V*m) */
real Ex = 40000; /* (V/m) */
real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */
real x[ND_ND];
real y;
Thread *t;
cell_t c;
face_t f;
DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)
float S_x;
dS[eqn] = 0;
S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
return S_x;
DEFINE_SOURCE(psi_source, c, t, dS, eqn)
float S_psi;
dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
return S_psi;
Sources:
Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.
Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.
Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).
Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.
Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).
Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.
Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.
Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.
Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.
Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.
Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).
Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.
Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.
Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.
Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).
Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.
Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54
Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.
Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.